
© 2006 Adobe Systems Incorporated

The OpenType layout features !le:
Structure and editing
Christopher Slye
Adobe Systems, Inc.
ATypI Lisbon, 28 September 2006

Bc

v.2006.10.06.1

© 2006 Adobe Systems Incorporated

© 2006 Adobe Systems Incorporated

Introduction
What am I talking about?

© 2006 Adobe Systems Incorporated

Feature !les, not features.

© 2006 Adobe Systems Incorporated

So-called western fonts

• Latin, Greek & Cyrillic scripts.

• Both “Pro” and “Std” fonts.

• Adobe Originals are Adobe’s most advanced Western fonts,
with the most complex feature !les.

© 2006 Adobe Systems Incorporated

Adobe type production

© 2006 Adobe Systems Incorporated

• We write feature code as a plain text !le,
with a plain text editor.

Adobe type production

© 2006 Adobe Systems Incorporated

• We write feature code as a plain text !le,
with a plain text editor.
If you like to script, or write HTML or some other kind of code,
then you might be the right kind of person.

Adobe type production

© 2006 Adobe Systems Incorporated

• We write feature code as a plain text !le,
with a plain text editor.
If you like to script, or write HTML or some other kind of code,
then you might be the right kind of person.

• We build our fonts with tools found in our font
development kit (FDK).

Adobe type production

© 2006 Adobe Systems Incorporated

• We write feature code as a plain text !le,
with a plain text editor.
If you like to script, or write HTML or some other kind of code,
then you might be the right kind of person.

• We build our fonts with tools found in our font
development kit (FDK).
Such as MakeOTF, which builds an OpenType font from a PFA
font and a features !le (among others).

Adobe type production

© 2006 Adobe Systems Incorporated

• We write feature code as a plain text !le,
with a plain text editor.
If you like to script, or write HTML or some other kind of code,
then you might be the right kind of person.

• We build our fonts with tools found in our font
development kit (FDK).
Such as MakeOTF, which builds an OpenType font from a PFA
font and a features !le (among others).

• Of course, there are other ways to do it.

Adobe type production

© 2006 Adobe Systems Incorporated

Adobe type production

© 2006 Adobe Systems Incorporated

Adobe type production

• We follow the OpenType Feature File Speci!cation.

© 2006 Adobe Systems Incorporated

Adobe type production

• We follow the OpenType Feature File Speci!cation.

• We use a “character + feature” model.

© 2006 Adobe Systems Incorporated

Adobe type production

• We follow the OpenType Feature File Speci!cation.

• We use a “character + feature” model.
We used to assign Unicode PUA values to alternates and other
glyphs, but we’ve stopped. All glyphs need access by way of a
layout feature.

© 2006 Adobe Systems Incorporated

Adobe type production

• We follow the OpenType Feature File Speci!cation.

• We use a “character + feature” model.
We used to assign Unicode PUA values to alternates and other
glyphs, but we’ve stopped. All glyphs need access by way of a
layout feature.

• A lot of our older OpenType fonts have good examples of
bad practices.

© 2006 Adobe Systems Incorporated

Our fonts tell the story.
From our !rst OpenType fonts, our approach to creating
the features !le has evolved and improved.

© 2006 Adobe Systems Incorporated

• Adobe Garamond Pro
One of the !rst OpenType “Pro” fonts.

• Warnock Pro
One of the !rst Adobe Originals created in the OpenType era.

• Ca"isch Script Pro
Complex contextual substitution interactions.

• Minion Pro (v2)
Expanded, edited, !xed.

• Garamond Premier Pro
A recent (and complex) font family.

Features milestones

© 2006 Adobe Systems Incorporated

Who are you?

© 2006 Adobe Systems Incorporated

Code example
feature case {
 sub @PUNCT1_DEFAULT by @PUNCT1_UC;
 sub @PUNCT3_DEFAULT by @PUNCT3_UC;
 sub @ACCENTS_LC by @ACCENTS_UC;
 sub sfthyphen by hyphen.cap;
 sub bulletoperator by periodcentered.cap;
 lookup LNUM;
} case;

© 2006 Adobe Systems Incorporated

There are di#erent ways to
make a feature !le.
There are also di"erent ways to arrange the parts of the features !le.

© 2006 Adobe Systems Incorporated

© 2006 Adobe Systems Incorporated

The big picture
What makes a features !le.
Organizing !les and text to maximize sanity and minimize errors.

© 2006 Adobe Systems Incorporated

Feature !les

© 2006 Adobe Systems Incorporated

• If data can be shared among fonts, then don’t duplicate it
— share it.

Feature !les

© 2006 Adobe Systems Incorporated

• If data can be shared among fonts, then don’t duplicate it
— share it.

• Name !les appropriately and consistently.

Feature !les

© 2006 Adobe Systems Incorporated

• If data can be shared among fonts, then don’t duplicate it
— share it.

• Name !les appropriately and consistently.

• Think about others.

Feature !les

© 2006 Adobe Systems Incorporated

• If data can be shared among fonts, then don’t duplicate it
— share it.

• Name !les appropriately and consistently.

• Think about others.
Maybe.

Feature !les

© 2006 Adobe Systems Incorporated

• If data can be shared among fonts, then don’t duplicate it
— share it.

• Name !les appropriately and consistently.

• Think about others.
Maybe.

• Some parts can be:

Feature !les

© 2006 Adobe Systems Incorporated

• If data can be shared among fonts, then don’t duplicate it
— share it.

• Name !les appropriately and consistently.

• Think about others.
Maybe.

• Some parts can be:
family-wide
style-wide
font-speci!c

Feature !les

© 2006 Adobe Systems Incorporated

A simple font family directory
GaramondPremierPro/
 features.family
 Roman/
 Bold/
 features
 features.kern
 Regular/
 features
 features.kern
 Italic/
 BoldItalic/
 features
 features.kern
 Italic/
 features
 features.kern

© 2006 Adobe Systems Incorporated

A simple ‘features’ !le

table head {
 FontRevision 2.015;
} head;

table OS/2 {
 FSType 8;
 TypoAscender 727;
 TypoDescender -273;
 Panose 2 4 5 3 5 2 1 2 2 3;
 XHeight 438;
 CapHeight 651;
} OS/2;

include (../../features.family)

feature kern {
 include (features.kern)
} kern;

© 2006 Adobe Systems Incorporated

The ‘include’ statement
include (../../features.family)

© 2006 Adobe Systems Incorporated

Some signi!cant parts

• head table

• name table

• OS/2 table

• class de!nitions

• Substitution features (GSUB)

• Kerning (GPOS)

• other stu#

© 2006 Adobe Systems Incorporated

The head table

• Holds the font version number.

• Put it at the top — because if you or anyone else is looking
for it, that’s where they’ll start!

• MakeOTF adds more info automatically.

© 2006 Adobe Systems Incorporated

head table

table head {
 FontRevision 1.014;
} head;

© 2006 Adobe Systems Incorporated

The name table

• Probably something which can be shared across the whole
font family.

© 2006 Adobe Systems Incorporated

name table
table name {
 nameid 0 "\00a9 2005 Adobe Systems Incorporated. All rights reserved.";
 nameid 0 1 "\a9 2005 Adobe Systems Incorporated. All rights reserved.";
 nameid 11 "http://www.adobe.com/type";
 nameid 11 1 "http://www.adobe.com/type";
 nameid 14 "http://www.adobe.com/type/legal.html";
 nameid 14 1 "http://www.adobe.com/type/legal.html";
 nameid 7 "Garamond Premier is a trademark of Adobe Systems Incorporated
 in the United States and/or other countries.";
 nameid 7 1 "Garamond Premier is a trademark of Adobe Systems
 Incorporated in the United States and/or other countries.";
 nameid 9 "Robert Slimbach";
 nameid 9 1 "Robert Slimbach";
} name;

http://www.adobe.com/type
http://www.adobe.com/type
http://www.adobe.com/type
http://www.adobe.com/type
http://www.adobe.com/type/legal.html
http://www.adobe.com/type/legal.html
http://www.adobe.com/type/legal.html
http://www.adobe.com/type/legal.html

© 2006 Adobe Systems Incorporated

The OS/2 table

• One of the more annoying table.

• Adobe typically includes:
Vertical metrics
PANOSE numbers
Embedding (fsType) value

• PANOSE values are usually font-speci!c, so each font
needs its own OS/2 table.

• For more information, read the Feature File Speci!cation,
the OpenType Speci!cation, or prowl the online discussions.

© 2006 Adobe Systems Incorporated

OS/2 table

table OS/2 {
 TypoAscender 725;
 TypoDescender -275;
 Panose 2 2 4 2 6 5 6 2 4 3;
 XHeight 390;
 CapHeight 641;
 FSType 8;
} OS/2;

© 2006 Adobe Systems Incorporated

Class de!nitions

• More important than they seems.

• Well-designed classes can make feature code easier, save
you time, and reduce errors.

• Strike a balance between functional, useful classes, and
unnecessary clutter.

• Class de!nitions used for kerning are a somewhat di#erent
kind of thing.
Still important to create carefully, but usually distinct from
classes used for substitutions.

© 2006 Adobe Systems Incorporated

Class de!nitions

@FIG_TAB_LINING = [zero one two three four five six
seven eight nine];

@FIG_FIT_OLDSTYLE = [zero.oldstyle one.oldstyle
two.oldstyle three.oldstyle four.oldstyle five.oldstyle
six.oldstyle seven.oldstyle eight.oldstyle
nine.oldstyle];

@PUNCT3_DEFAULT = [exclamdown questiondown];

@PUNCT3_SC = [exclamdown.sc questiondown.sc];

@PUNCT3_UC = [exclamdown.cap questiondown.cap];

© 2006 Adobe Systems Incorporated

Substitution features (GSUB)

• Probably what you think of when you think about
OpenType features.

• The most fun, but also the most work.

© 2006 Adobe Systems Incorporated

Substitution features (GSUB)

feature ornm {
 sub bullet from @ORNAMENTS;
} ornm;

feature zero {
 sub zero by zero.slash;
 sub zero.fitted by zero.slashfitted;
} zero;

feature ordn {
 sub a by ordfeminine;
 sub o by ordmasculine;
} ordn;

© 2006 Adobe Systems Incorporated

Kerning (GPOS)

• If there is any feature code that you want to generate
automatically or with a script, this is it.

• Getting kerning feature code into the font can be a huge
task.

© 2006 Adobe Systems Incorporated

Kerning (GPOS)

@A_LC = [a aacute acircumflex adieresis agrave aring
atilde abreve amacron aogonek adotbelow ahook
acircumflexacute acircumflexgrave acircumflexhook
acircumflextilde acircumflexdotbelow abreveacute
abrevegrave abrevehook abrevetilde abrevedotbelow
aringacute];

@ROUND_LC_LEFT_CYR = [be.ital o.cyr er ef e.cyr yu fita
schwa];

enum pos @V_UC [egrave ebreve ecaron emacron] -94;
pos @A_UC_LEFT @VWY_LC -66;
pos @A_UC_CYR @ECYR_LC_RIGHT_CYR 11;
pos @ALPHA_LC_GRK @BETA_ALT_LC_GRK -3;

© 2006 Adobe Systems Incorporated

Other stu#

• size feature

• BASE table

© 2006 Adobe Systems Incorporated

size feature

feature size {
 parameters
 110 # design size (decipoints)
 3 # subfamily identifier
 84 # range start (exclusive, decipoints)
 130 # range end (inclusive, decipoints)
 ;
 sizemenuname "Regular"; # Windows Unicode menu name
 sizemenuname 1 "Regular"; # Mac Roman menu name
} size;

© 2006 Adobe Systems Incorporated

BASE table

table BASE {
 HorizAxis.BaseTagList ideo romn;
 HorizAxis.BaseScriptList
 latn romn -177 0,
 cyrl romn -177 0,
 grek romn -177 0;
} BASE;

© 2006 Adobe Systems Incorporated

© 2006 Adobe Systems Incorporated

Substitution features
Also known as “GSUB.”

© 2006 Adobe Systems Incorporated

Basic substitution is easy
feature salt {
 sub a by a.alt;
 sub b from [b.alt1 b.alt2 b.alt3];
} salt;

feature liga {
 sub f f i by f_f_i;
 sub f i by f_i;
} liga;

feature calt {
 sub g y' by y.alt;
} calt;

© 2006 Adobe Systems Incorporated

Order can be important
feature liga {
 sub f f by f_f;
 sub f i by f_i;
 sub f f i by f_f_i;
} liga;

© 2006 Adobe Systems Incorporated

Order can be important
feature liga {
 sub f f by f_f;
 sub f i by f_i;
 sub f f i by f_f_i;
} liga;

The layout engine will “stop” after it matches something.
f f i will become f_f i.

© 2006 Adobe Systems Incorporated

Order can be important
This will work better:

feature liga {
 sub f f i by f_f_i;
 sub f f by f_f;
 sub f i by f_i;
} liga;

© 2006 Adobe Systems Incorporated

Some feature code is not entirely
necessary, but makes you feel good.
And maybe it’s safer.

© 2006 Adobe Systems Incorporated

feature onum {
 sub @FIG_DEFAULT by @FIG_TAB_OLDSTYLE;
 sub @FIG_FIT_LINING by @FIG_FIT_OLDSTYLE;
} onum;

feature lnum {
 sub @FIG_TAB_OLDSTYLE by @FIG_DEFAULT;
 sub @FIG_FIT_OLDSTYLE by @FIG_FIT_LINING;
} lnum;

Over-engineering?

© 2006 Adobe Systems Incorporated

feature onum {
 sub @FIG_DEFAULT by @FIG_TAB_OLDSTYLE;
 sub @FIG_FIT_LINING by @FIG_FIT_OLDSTYLE;
} onum;

feature lnum {
 sub @FIG_TAB_OLDSTYLE by @FIG_DEFAULT;
 sub @FIG_FIT_OLDSTYLE by @FIG_FIT_LINING;
} lnum;

Some substitutions are not necessary, because the input glyphs will not be
present before other layout features are applied.

Over-engineering?

© 2006 Adobe Systems Incorporated

feature onum {
 sub @FIG_DEFAULT by @FIG_TAB_OLDSTYLE;
} onum;

feature lnum {
 sub @FIG_TAB_OLDSTYLE by @FIG_DEFAULT;
} lnum;

feature pnum {
 sub @FIG_DEFAULT by @FIG_FIT_LINING;
 sub @FIG_TAB_OLDSTYLE by @FIG_FIT_OLDSTYLE;
} pnum;

feature tnum {
 sub @FIG_FIT_LINING by @FIG_DEFAULT;
 sub @FIG_FIT_OLDSTYLE by @FIG_TAB_OLDSTYLE;
} tnum;

Over-engineering?

© 2006 Adobe Systems Incorporated

feature onum {
 sub @FIG_DEFAULT by @FIG_TAB_OLDSTYLE;
} onum;

feature lnum {
 sub @FIG_TAB_OLDSTYLE by @FIG_DEFAULT;
} lnum;

feature pnum {
 sub @FIG_DEFAULT by @FIG_FIT_LINING;
 sub @FIG_TAB_OLDSTYLE by @FIG_FIT_OLDSTYLE;
} pnum;

feature tnum {
 sub @FIG_FIT_LINING by @FIG_DEFAULT;
 sub @FIG_FIT_OLDSTYLE by @FIG_TAB_OLDSTYLE;
} tnum;

Over-engineering?

© 2006 Adobe Systems Incorporated

feature onum {
 sub @FIG_DEFAULT by @FIG_TAB_OLDSTYLE;
} onum;

feature lnum {
 sub @FIG_TAB_OLDSTYLE by @FIG_DEFAULT;
} lnum;

feature pnum {
 sub @FIG_DEFAULT by @FIG_FIT_LINING;
 sub @FIG_TAB_OLDSTYLE by @FIG_FIT_OLDSTYLE;
} pnum;

feature tnum {
 sub @FIG_FIT_LINING by @FIG_DEFAULT;
 sub @FIG_FIT_OLDSTYLE by @FIG_TAB_OLDSTYLE;
} tnum;

Over-engineering?

© 2006 Adobe Systems Incorporated

Over-engineering? Maybe not.

© 2006 Adobe Systems Incorporated

Over-engineering? Maybe not.

• Some applications might expect all four layout features to
be present.

© 2006 Adobe Systems Incorporated

Over-engineering? Maybe not.

• Some applications might expect all four layout features to
be present.

• The presence of all four features in the font conveys some
information about what glyphs are in the font.

© 2006 Adobe Systems Incorporated

Over-engineering? Maybe not.

• Some applications might expect all four layout features to
be present.

• The presence of all four features in the font conveys some
information about what glyphs are in the font.

• Having all possibilities means you worry less.

© 2006 Adobe Systems Incorporated

Over-engineering? Maybe not.

• Some applications might expect all four layout features to
be present.

• The presence of all four features in the font conveys some
information about what glyphs are in the font.

• Having all possibilities means you worry less.

• But ... you should be able to trust the font and layout
engines to do the right thing.

© 2006 Adobe Systems Incorporated

Now here’s an even scarier example...

© 2006 Adobe Systems Incorporated

• Dictates the order in which features are applied during
OpenType layout.
At least it should.

• The most perilous part of the feature !le.

• Not all answers are obvious.

• Not all problems can be solved without creating new
problems.

Feature order

© 2006 Adobe Systems Incorporated

A AA A.scA A.alta A.scalt

Feature order: an example

© 2006 Adobe Systems Incorporated

A AA A.scA A.alta A.scalt

• One character, A, represented
by four glyphs:

Feature order: an example

© 2006 Adobe Systems Incorporated

A AA A.scA A.alta A.scalt

• One character, A, represented
by four glyphs:
A, A.alt
A.sc, A.scalt

Feature order: an example

© 2006 Adobe Systems Incorporated

A AA A.scA A.alta A.scalt

• One character, A, represented
by four glyphs:
A, A.alt
A.sc, A.scalt

• A.sc is the small-cap version
of A.

Feature order: an example

© 2006 Adobe Systems Incorporated

A AA A.scA A.alta A.scalt

• One character, A, represented
by four glyphs:
A, A.alt
A.sc, A.scalt

• A.sc is the small-cap version
of A.

• A.alt is an alternate of A.

Feature order: an example

© 2006 Adobe Systems Incorporated

A AA A.scA A.alta A.scalt

• One character, A, represented
by four glyphs:
A, A.alt
A.sc, A.scalt

• A.sc is the small-cap version
of A.

• A.alt is an alternate of A.

• A.scalt is an alternate of A.sc.

Feature order: an example

© 2006 Adobe Systems Incorporated

A AA A.scA A.alta A.scalt

• One character, A, represented
by four glyphs:
A, A.alt
A.sc, A.scalt

• A.sc is the small-cap version
of A.

• A.alt is an alternate of A.

• A.scalt is an alternate of A.sc.

• A.scalt is not the small-cap
version of A.alt.

Feature order: an example

© 2006 Adobe Systems Incorporated

A AA A.scA A.alta A.scalt

• One character, A, represented
by four glyphs:
A, A.alt
A.sc, A.scalt

• A.sc is the small-cap version
of A.

• A.alt is an alternate of A.

• A.scalt is an alternate of A.sc.

• A.scalt is not the small-cap
version of A.alt.
It is only the small-cap version
of plain A.

Feature order: an example

© 2006 Adobe Systems Incorporated

Feature order: an example
feature salt {
 sub A by A.alt;
 sub A.sc by A.scalt
} salt;

feature c2sc {
 sub [A A.alt] by A.sc;
} c2sc;

© 2006 Adobe Systems Incorporated

Feature order: an example
feature salt {
 sub A by A.alt;
 sub A.sc by A.scalt
} salt;

feature c2sc {
 sub [A A.alt] by A.sc;
} c2sc;

No way to get A.scalt.
If both 'salt' and 'c2sc' are applied,
A !rst becomes A.alt,
then A.alt becomes A.sc.

© 2006 Adobe Systems Incorporated

Feature order: an example
feature c2sc {
 sub [A A.alt] by A.sc;
} c2sc;

feature salt {
 sub A by A.alt;
 sub A.sc by A.scalt;
} salt;

© 2006 Adobe Systems Incorporated

Feature order: an example
feature c2sc {
 sub [A A.alt] by A.sc;
} c2sc;

feature salt {
 sub A by A.alt;
 sub A.sc by A.scalt;
} salt;

A.alt does not become A.sc, as desired.
If 'c2sc' is applied to A.alt, then 'salt' must already be applied to A.
A becomes A.sc, and then A.sc becomes A.scalt.

© 2006 Adobe Systems Incorporated

© 2006 Adobe Systems Incorporated

Language systems and lookups
Controlling what happens in di#erent scripts and languages.

© 2006 Adobe Systems Incorporated

Language system

• A language system is a combination of a script and
language tag.

• Specifying language systems ensures that all features
behave properly in the various scripts and languages in
which they are used.

• Two special tags, DFLT and d#t, are used to identify a
default language system, in environments where a script
and language is unspeci!ed.

© 2006 Adobe Systems Incorporated

‘languagesystem’

• The simplest use of a language system is the ‘DFLT’ script
and ‘d"t’ language, speci!ed in a single statement, before
all layout features:
languagesystem DFLT dflt;

• This tells the layout engine, “Unless speci!ed otherwise,
use DFLT/d"t for everything.”

© 2006 Adobe Systems Incorporated

‘languagesystem’
languagesystem DFLT dflt;
languagesystem latn dflt;
languagesystem cyrl dflt;
languagesystem grek dflt;

languagesystem latn AZE;
languagesystem latn CRT;
languagesystem latn DEU;
languagesystem latn FRA;
languagesystem latn MOL;
languagesystem latn ROM;
languagesystem latn TRK;
languagesystem cyrl SRB;

All language systems used elsewhere must also be speci!ed here.

© 2006 Adobe Systems Incorporated

Script and language

© 2006 Adobe Systems Incorporated

Script and language

• One or more language systems can be speci!ed within a
feature.

© 2006 Adobe Systems Incorporated

Script and language

• One or more language systems can be speci!ed within a
feature.

• This tells the layout engine, “Never mind, I am going to
specify everything in this feature manually.”

© 2006 Adobe Systems Incorporated

Script and language

• One or more language systems can be speci!ed within a
feature.

• This tells the layout engine, “Never mind, I am going to
specify everything in this feature manually.”

• This is how you change OpenType layout for di#erent
languages and scripts.

© 2006 Adobe Systems Incorporated

Script and language

• One or more language systems can be speci!ed within a
feature.

• This tells the layout engine, “Never mind, I am going to
specify everything in this feature manually.”

• This is how you change OpenType layout for di#erent
languages and scripts.
But your OS or layout engine has to help.

© 2006 Adobe Systems Incorporated

Script and language

• One or more language systems can be speci!ed within a
feature.

• This tells the layout engine, “Never mind, I am going to
specify everything in this feature manually.”

• This is how you change OpenType layout for di#erent
languages and scripts.
But your OS or layout engine has to help.

• When you specify a new language system, it becomes one
of the possible language systems for the entire font.

© 2006 Adobe Systems Incorporated

Script and language

languagesystem DFLT dflt;
languagesystem latn dflt;
languagesystem latn DEU;

feature dlig {
 script DFLT;
 language dflt;
 sub c t by c_t;
 sub s t by s_t;
 script latn;
 language dflt include_dflt;
 language DEU include_dflt;
 sub c h by c_h;
 sub c k by c_k;
} dlig;

© 2006 Adobe Systems Incorporated

Script and language

languagesystem DFLT dflt;
languagesystem latn dflt;
languagesystem latn DEU;

feature dlig {
 script DFLT;
 language dflt;
 sub c t by c_t;
 sub s t by s_t;
 script latn;
 language dflt include_dflt;
 language DEU include_dflt;
 sub c h by c_h;
 sub c k by c_k;
} dlig;

© 2006 Adobe Systems Incorporated

Script and language

languagesystem DFLT dflt;
languagesystem latn dflt;
languagesystem latn DEU;

feature dlig {
 script DFLT;
 language dflt;
 sub c t by c_t;
 sub s t by s_t;
 script latn;
 language dflt include_dflt;
 language DEU include_dflt;
 sub c h by c_h;
 sub c k by c_k;
} dlig;

© 2006 Adobe Systems Incorporated

Script and language

languagesystem DFLT dflt;
languagesystem latn dflt;
languagesystem latn DEU;

feature dlig {
 script DFLT;
 language dflt;
 sub c t by c_t;
 sub s t by s_t;
 script latn;
 language dflt include_dflt;
 language DEU include_dflt;
 sub c h by c_h;
 sub c k by c_k;
} dlig;

© 2006 Adobe Systems Incorporated

Script and language

DFLT/d"t latn/d"t latn/DEU

liga • • •
dlig • • •
salt • • •

© 2006 Adobe Systems Incorporated

Saving the i-dot

• What if you don’t want that dot on the i to disappear in a
particular language?
This often happens with ! ligatures.

• Turkish is one such language. (There are others.)

© 2006 Adobe Systems Incorporated

Saving the i-dot

feature liga {
 script DFLT;
 language dflt;
 sub f i by f_i;
 script latn;
 language dflt include_dflt;
 language TRK exclude_dflt;
} liga;

© 2006 Adobe Systems Incorporated

Saving the i-dot

feature liga {
 script DFLT;
 language dflt;
 sub f i by f_i;
 script latn;
 language dflt include_dflt;
 language TRK exclude_dflt;
} liga;

Declare special handling for script ‘latin’ and language ‘TRK’.
Default subsitutions will be excluded.

With many ligatures and language systems, this approach can get messy.

© 2006 Adobe Systems Incorporated

Saving the i-dot

feature locl {
 script latn;
 language TRK;
 sub i by i.dot;
} locl;

feature liga {
 sub f i by f_i;
} liga;

© 2006 Adobe Systems Incorporated

Saving the i-dot

feature locl {
 script latn;
 language TRK;
 sub i by i.dot;
} locl;

feature liga {
 sub f i by f_i;
} liga;

Create a duplicate of i named i.dot, and substitute it in the ‘locl’ feature.

© 2006 Adobe Systems Incorporated

Saving the i-dot

feature locl {
 script latn;
 language TRK;
 sub i by i.dot;
} locl;

feature liga {
 sub f i by f_i;
} liga;

Later, a ligature will be substituted for f and i, but not i.dot.

© 2006 Adobe Systems Incorporated

Lookups

• In a feature !le, a lookup is a labeled group of rules which
can be referenced later in the features.

• Like a glyph class, it saves space and prevents errors by
helping keep things identical where they need to be.

© 2006 Adobe Systems Incorporated

Lookups
feature ordn {
 lookup ORDN {
 sub @LETTERS_LC by @LETTERS_SUPERIOR;
 } ORDN;
} ordn;

feature sups {
 sub @FIG_DEFAULT by @FIG_SUPERIOR;
 sub @PUNCT_DEFAULT by @PUNCT_SUPERIOR;
 lookup ORDN;
} sups;

© 2006 Adobe Systems Incorporated

Lookups
feature ordn {
 lookup ORDN {
 sub @LETTERS_LC by @LETTERS_SUPERIOR;
 } ORDN;
} ordn;

feature sups {
 sub @FIG_DEFAULT by @FIG_SUPERIOR;
 sub @PUNCT_DEFAULT by @PUNCT_SUPERIOR;
 lookup ORDN;
} sups;

© 2006 Adobe Systems Incorporated

Lookups

Another advantage of lookups is that they allow you
to “match” more than one substitution rule within a
feature.

© 2006 Adobe Systems Incorporated

Lookups

feature calt {
 sub [h m n]' [c d o] by [h.alt m.alt n.alt];
 sub n.alt' d by n.alt2;
} calt;

With the code above, the second substitution will never happen.

feature calt {
 lookup HMN {
 sub [h m n]' [c d o] by [h.alt m.alt n.alt];
 } HMN;
 sub n.alt' d by n.alt2;
} calt;

Separated by a lookup, the layout engine will continue after matching the
!rst substitution.

© 2006 Adobe Systems Incorporated

© 2006 Adobe Systems Incorporated

Kerning
Something that could be an entirely separate talk. (Oh, wait, it is.)

© 2006 Adobe Systems Incorporated

Two di#erent kinds of kerning

• A table for “speci!c” kerns holds single glyphs kerned to
single glyphs.

• A table for class kerns holds glyph classes kerned to other
glyph classes.

© 2006 Adobe Systems Incorporated

Speci!c kerns
feature kern {
 pos A V -20;
 pos A W -20;
} kern;

Or, this does the same thing:

feature kern {
 enum pos A [V W] -20;
} kern;

© 2006 Adobe Systems Incorporated

Class kerns
feature kern {
 pos @A_UC @VW_UC -20;
} kern;

© 2006 Adobe Systems Incorporated

Use both to make exceptions
feature kern {
 enum pos [Aacute Acircumflex] @VW_UC -10;
 pos @A_UC @VW_UC -20;
} kern;

If two glyphs match in the !rst line, the kern in the second line will not be
applied.

© 2006 Adobe Systems Incorporated

© 2006 Adobe Systems Incorporated

That was stupid
Some examples from old and ill-conceived feature code.

© 2006 Adobe Systems Incorporated

Adobe Garamond Pro (c. 1999)
Adobe Garamond Regular Pro Feature File
Version 99.03.10.00

This feature !le from an early version of Adobe
Garamond Pro, circa March 1999, shows some
interesting and amusing approaches to OpenType
layout.

© 2006 Adobe Systems Incorporated

Adobe Garamond Pro (c. 1999)
--- FEATURE SUMMARY
--- Substitution
aalt: access all alternates
smcp: lc to smallcaps
c2sc: caps to smallcaps
case: uppercase, math and punct
titl: replaces default glyphs
fina: replaces glyphs at ends of
onum: changes to oldstyle
lnum: changes to lining figures
pnum: changes to proportional
tnum: changes to tabular figures
crcy: replaces any currency char
sups: makes numbers superior
sinf: makes numbers inferior
numr: replaces selected figures
dnom: replaces selected figures
frac: substitutes the existing
dpng: dipthong subs
liga: standard lig replacement
salt: replaces glyphs with
dlig: discretionary ligatures
ordn: subs ordinal glyphs after
ornm: allows access to ornaments
zero: slashed zero

© 2006 Adobe Systems Incorporated

Adobe Garamond Pro (c. 1999)
--- FEATURE SUMMARY
--- Substitution
aalt: access all alternates
smcp: lc to smallcaps
c2sc: caps to smallcaps
case: uppercase, math and punct
titl: replaces default glyphs
fina: replaces glyphs at ends of
onum: changes to oldstyle
lnum: changes to lining figures
pnum: changes to proportional
tnum: changes to tabular figures
crcy: replaces any currency char
sups: makes numbers superior
sinf: makes numbers inferior
numr: replaces selected figures
dnom: replaces selected figures
frac: substitutes the existing
dpng: dipthong subs
liga: standard lig replacement
salt: replaces glyphs with
dlig: discretionary ligatures
ordn: subs ordinal glyphs after
ornm: allows access to ornaments
zero: slashed zero

These commented lines
at the top of the feature
!le show an early “table
of contents” which we
included for our own
information.

© 2006 Adobe Systems Incorporated

Adobe Garamond Pro (c. 1999)
--- FEATURE SUMMARY
--- Substitution
aalt: access all alternates
smcp: lc to smallcaps
c2sc: caps to smallcaps
case: uppercase, math and punct
titl: replaces default glyphs
fina: replaces glyphs at ends of
onum: changes to oldstyle
lnum: changes to lining figures
pnum: changes to proportional
tnum: changes to tabular figures
crcy: replaces any currency char
sups: makes numbers superior
sinf: makes numbers inferior
numr: replaces selected figures
dnom: replaces selected figures
frac: substitutes the existing
dpng: dipthong subs
liga: standard lig replacement
salt: replaces glyphs with
dlig: discretionary ligatures
ordn: subs ordinal glyphs after
ornm: allows access to ornaments
zero: slashed zero

These commented lines
at the top of the feature
!le show an early “table
of contents” which we
included for our own
information.

Such notes were not
accurately maintained
and quickly lost their
usefulness.

© 2006 Adobe Systems Incorporated

Adobe Garamond Pro (c. 1999)
--- FEATURE SUMMARY
--- Substitution
aalt: access all alternates
smcp: lc to smallcaps
c2sc: caps to smallcaps
case: uppercase, math and punct
titl: replaces default glyphs
fina: replaces glyphs at ends of
onum: changes to oldstyle
lnum: changes to lining figures
pnum: changes to proportional
tnum: changes to tabular figures
crcy: replaces any currency char
sups: makes numbers superior
sinf: makes numbers inferior
numr: replaces selected figures
dnom: replaces selected figures
frac: substitutes the existing
dpng: dipthong subs
liga: standard lig replacement
salt: replaces glyphs with
dlig: discretionary ligatures
ordn: subs ordinal glyphs after
ornm: allows access to ornaments
zero: slashed zero

Notice that we were
using two features,
now deprecated:
‘crcy’ and ‘dpng’.

© 2006 Adobe Systems Incorporated

Adobe Garamond Pro (c. 1999)
feature frac {
 lookup numerator {
 sub @FIG_ONE' @FRACTION @FIG_TWO by [one one one one one one one];
 sub @FIG_ONE' @FRACTION @FIG_FOUR by [one one one one one one one];
 sub @FIG_THREE' @FRACTION @FIG_FOUR by [three three three three three
 sub @FIG_ONE' @FRACTION @FIG_THREE by [one one one one one one one];
 sub @FIG_TWO' @FRACTION @FIG_THREE by [two two two two two two two];
 sub @FIG_ONE' @FRACTION @FIG_EIGHT by [one one one one one one one];
 sub @FIG_THREE' @FRACTION @FIG_EIGHT by [three three three three three
 sub @FIG_FIVE' @FRACTION @FIG_EIGHT by [five five five five five five
 sub @FIG_SEVEN' @FRACTION @FIG_EIGHT by [seven seven seven seven seven
 sub @FIG_ZERO' @FRACTION @FIG_ZERO @FIG_ZERO by [zero zero zero zero
 sub @FIG_ZERO' @FRACTION @FIG_ZERO by [zero zero zero zero zero zero
 } numerator;

 lookup denominator {
 sub @FIG_ONE @FRACTION @FIG_TWO' by [two two two two two two two];
 sub @FIG_ONE @FRACTION @FIG_FOUR' by [four four four four four four

The ‘frac’ feature contains lookups which change di"erent numbers in fraction contexts into default
numbers, then ...

© 2006 Adobe Systems Incorporated

Adobe Garamond Pro (c. 1999)
 lookup fractions {
 sub one @FRACTION two by onehalf;
 sub one @FRACTION four by onequarter;
 sub three @FRACTION four by threequarters;
 sub one @FRACTION three by onethird;
 sub two @FRACTION three by twothirds;
 sub one @FRACTION eight by oneeighth;
 sub three @FRACTION eight by threeeighths;
 sub five @FRACTION eight by fiveeighths;
 sub seven @FRACTION eight by seveneighths;
 sub zero @FRACTION zero zero by perthousand;
 sub zero @FRACTION zero by percent;
 } fractions;
}frac;

... changes those default numbers into pre-built fractions.

© 2006 Adobe Systems Incorporated

A better way...

feature frac {
 sub @FIG_ONE @SLASH @FIG_TWO by onehalf;
 sub @FIG_ONE @SLASH @FIG_FOUR by onequarter;
 sub @FIG_THREE @SLASH @FIG_FOUR by threequarters;
 sub @FIG_ONE @SLASH @FIG_THREE by onethird;
 sub @FIG_TWO @SLASH @FIG_THREE by twothirds;
 sub @FIG_ONE @SLASH @FIG_EIGHT by oneeighth;
 sub @FIG_THREE @SLASH @FIG_EIGHT by threeeighths;
 sub @FIG_FIVE @SLASH @FIG_EIGHT by fiveeighths;
 sub @FIG_SEVEN @SLASH @FIG_EIGHT by seveneighths;
 sub @FIG_ZERO @SLASH @FIG_ZERO @FIG_ZERO by
 perthousand;
 sub @FIG_ZERO @SLASH @FIG_ZERO by percent;
} frac;

© 2006 Adobe Systems Incorporated

© 2006 Adobe Systems Incorporated

There’s a lot more
I didn’t mention.

© 2006 Adobe Systems Incorporated

The end
Thanks.

Bc

